

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

The Structure-Controlling Solventless Syntheses of Uniform Cu₂S Nanodisks and their Optical Properties

Yu-Biao Chen, Ling Chen, Li-Ming Wu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China

$d_{obs}(\mathrm{\AA})$	k	kd (Å)
17.8429	2	35.6858
11.9361	3	35.8083
8.9698	4	35.8792
7.1618	5	35.8090
5.9795	6	35.8770
5.1219	7	35.8533
4.4587	8	35.6696
3.9929	9	35.9361

STable 1. Observed Interlayer Spacing (kd Å) from the Pronounced (0k0) Reflections of As-synthesized Cu(SC₁₂H₂₅)₂ Precursor

SFigure 1. The enlargement of Figure 4 (left), and the *d* value-anneal time-dependence plots(right).

SFigure 2. The tilted TEM images of Cu_2S nanodisks. Blue circles represent the nanodisks lying flat on the substrate; red ellipse represent the standing nanodisks.

SFigure 3. Some samples showing the gradually development of round nanodisks into faceted nanodisks with six-fold symmetry.

SFigure 4. SEM images of Cu_2S nanodisks (left) and their sinters (right) that are obtained by re-anneal under N_2 flow at 220 °C for 2 hours.

SFigure 5. The FTIR spectra of (a) 1-dodecanethiol and the products by heating $Cu(SC_{12}H_{25})_2$ precursor at 220 °C for (b) 2 hours and (c) 10 hours and (d) after washing the product in (b) with dichloromethane to remove organic byproducts.

SFigure 6. The yellow-green precursor (left) turns black (right) by heat treatment at N_2 atmosphere.

SFigure 7. Diameter distributions for Cu₂S nanodisks produced at 200 °C for 10 hours; the average diameter is ~25.2 nm (s = $\pm 16.7\%$).

SFigure 8. Thickness distributions for Cu₂S nanodisks produced at 200 °C for 10 hours; the average thickness is ~11.8 nm (s = $\pm 7.3\%$).

SFigure 9. Diameter distributions for Cu₂S nanodisks produced at 210 °C for 2 hours; the average diameter is ~8.3 nm (s = $\pm 11.8\%$).

SFigure 10. Diameter distributions for Cu₂S nanodisks produced at 210 °C for 10 hours; the average diameter is ~25.8 nm (s = $\pm 15.3\%$).

SFigure 11. Particle thickness size distributions for Cu₂S nanodisks produced at 210 °C for 10 hours; the average thickness is ~12.0 nm (s = $\pm 7.1\%$).

SFigure 12. Particle diameter size distributions for Cu₂S nanoparticles produced at 220 °C for 0.5 hour; the average diameter is ~5.5 nm (s = $\pm 7.7\%$).

SFigure 13. Particle diameter size distributions for Cu₂S nanodisks produced at 220 °C for 1 hour; the average diameter is ~21.7 nm (s = $\pm 24.1\%$).

SFigure 14. Particle thickness size distributions for Cu₂S nanodisks produced at 220 °C for 1 hour; the average thickness is ~11.9 nm (s = $\pm 6.3\%$).

SFigure 15. Particle diameter size distributions for Cu₂S nanodisks produced at 220 °C for 2 hours; the average diameter is ~23.2 nm (s = $\pm 18.5\%$).

SFigure 16. Particle thickness size distributions for Cu₂S nanodisks produced at 220 °C for 2 hours; the average thickness is ~12.0 nm (s = $\pm 5.3\%$).

SFigure 17. Particle diameter size distributions for Cu₂S nanodisks produced at 220 °C for 4 hours; the average diameter is ~26.0 nm (s = $\pm 14.9\%$).

SFigure 18. Particle thickness size distributions for Cu₂S nanodisks produced at 220 °C for 4 hours; the average thickness is ~12.3 nm (s = $\pm 6.5\%$).

SFigure 19. Particle diameter size distributions for Cu₂S nanoplatelets produced at 220 °C for 10 hours; the average diameter is ~27.5 nm (s = $\pm 14.7\%$).

SFigure 20. Particle thickness size distributions for Cu₂S nanoplatelets produced at 220 °C for 10 hours; the average thickness is ~12.7 nm (s = $\pm 5.4\%$).